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Abstract

One-parameter families of compact approximations to grid functionals with inverses of two-point operators and their
properties are described. As particular examples, interpolation/extrapolations operators, quadratures formulas and
approximations to derivatives are presented. Using operators from the families with fixed parameters values as basis oper-
ators, their linear combinations providing formally arbitrary-order approximations (multioperators) are constructed.
Numerical illustrations are presented. Special emphasis is placed on first derivatives discretizations in the context of con-
servation laws. As an example, a highly accurate tenth-order scheme is outlined and tested against the Burgers’ equation. It
is shown how extrapolation multioperators can be used to create boundary closures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The multioperators idea proposed previously by the author [1] is aimed at construction formally arbitrary-
order approximation to any grid functional (midpoint values, integrals, derivatives at nodes etc.). It cardinally
differs from the standard way of enlarging stencils to get higher orders formulas. Operators of conventional
approximations may be viewed as summation over stencils with some coefficients . In contrast, multioperators
may be viewed as sums of basis operators with some coefficients, the basis operators being formed by setting
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distinct values to parameters in one-parameter operators families. Increase of multioperators orders can be
achieved by simply increasing numbers of basis operators, that is, by increasing numbers of the parameter val-
ues. Supposing that the number of the parameters and hence the number of the basis operators is M, the
orders are linear functions in M. Since M is an arbitrary number, multioperators actions on grid functions
may be viewed as arbitrary-order approximations.

To calculate multioperators actions, it is sufficient to calculate the actions of each basis operator, multiply
the results by known coefficients and perform summation of the multiplied values. Since the basis operators
differ only in the parameters values, the calculations can be carried out in a parallel and synchronous manner
when using parallel machines with at least M processors. In the case of negligible times of data exchange pro-
cesses, the CPU times for multioperators are equal to those for the corresponding basis operators. Assuming
that speedup is the ratio of the CPU times needed to calculate multioperators actions in the case of single pro-
cessor and multiprocessors machines, the ‘‘idealized” speedup is equal to M. It should be emphasized that this
type of speedup concerns only multioperators actions rather than parallelism of calculations in the framework
of final algorithms. Thus multioperators parallelism can be combined with other ways of parallelization of
multioperators-based methods (for example, parallel calculations for spatial coordinates, using domain
decomposition principle etc.).

Clearly, the multioperators concept is quite general. It can be applied to various problem in various forms.
However since approximation order is not unique property of efficient algorithms, additional studies concern-
ing other properties of the multioperators in particular cases are needed. For example, stability of the resulting
schemes and accurate representation of small scales may be viewed as important properties in the context of
CFD calculations.

In the previous papers [3–6], the methodology was applied to fluid dynamics equations, one-parameter fam-
ily of Compact Upwind Differencing (CUD) operators from [2] being used as basis operators. The companion
paper [8] reflects the recent results in this area presenting remarkably accurate high resolution conservative
ninth-order multioperators approximations to convection-type terms based on the fifth-order CUD. However,
other types of multioperators (for example, central ones with artificially introduced free parameters) were also
considered [7]. The brief outlines of the multioperators activity can be found in [8].

In the above cited papers, compact approximations are understood as those with narrow stencils containing
no more than three nodes thus justifying the label ‘‘compact”. Such types of operators allow one to use three-
diagonal inversions and to calculate actions of the involved explicit operators at the internal grid points of
bounded domains without using values outside the domains or changing their forms near boundaries. At pres-
ent, it is clear that any approximation with one-parameter inverse operators (that is, a compact approximation
in a broad sense) has potential for generating basis operators, the parameter being either ‘‘natural” (as in the
CUD case) or artificially introduced.

In the present paper, the further results in the multioperators area are presented. They concern with novel
one-parameter families of compact approximation to grid functionals as a source of basis operators. The fam-
ilies were briefly outlined in short paper [9]. The approximations can be viewed as rational functions of two-
point and three-point operators and are in line with the previous strategy of using narrow stencils only.

Inversions of two-point operators with fixed numerical constants is the well known procedure which can be
used as a part of calculations related to compact approximations to derivatives. In particular, the implicit part
of the earliest third-order CUD operators [2] reduces to two-point operators for particular values of the
involved parameter. Compact approximations with two-point inverse operators were considered also in
[10]. In contrast, the below described families depend on a free parameter thus allowing one to construct mul-
tioperators. Moreover they concern with various types of grid functionals, the derivatives at grid points being
a particular example.

In some instances, the operators families can be used to increase orders of standard formulas. However,
their more important property seems to be their ability to provide basis operators for novel types of multiop-
erators characterized by very small operation counts per node and by possibly negligible influence of boundary
conditions for two-diagonal operators inversions. Their obvious extensions we are not presently interested in
are rational functions of two-point and more-than-three-point operators.

The rest of the paper consist of the description of the families and their properties (Section 2) and the result-
ing multioperators (Section 3). Due to the corresponding numerous possibilities and options, the paper is
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aimed at outlining main ideas rather then at presenting sufficiently documented algorithms. Thus numerical
illustrations of Section 3 may be viewed only as simple examples showing possible performance of the multi-
operators technique.

2. One-parametric families of compact approximations with two-diagonal inversions

2.1. Definitions and properties

2.1.1. Using inverses of two-point operators

Supposing that a uniform mesh xh ¼ ðxj ¼ jh; j ¼ 0;�1;�2; . . .Þ with a constant mesh size h is introduced,
we denote by D0 and D2 the central three-point operators given by
D0 ¼ T 1 � T�1; D2 ¼ T 1 � 2I þ T�1; T�1vj ¼ vj�1:
where I is the identity operator. Consider now the ‘‘left” and ‘‘right” grid operators defined respectively by
N lðcÞ ¼ ðI þ cðI � T�1ÞÞ�1 N rðcÞ ¼ ðI þ cðI � T 1ÞÞ�1
;

where c is supposed to be a non-zero free parameter.
The actions wj ¼ N kuj; k ¼ l; r of Nl and N r on known grid functions uj; j ¼ 1; 2; . . . ; n� 1 in the case of

bounded domains x0 6 x 6 xn can be calculated using the following procedures.
wj ¼ awj�1 þ uj=ð1þ cÞ; w0 is given; j ¼ 1; 2; . . . n� 1

wj ¼ awjþ1 þ uj=ð1þ cÞ; wn is given; j ¼ n� 1; n� 2; . . . ; 1

a ¼ c=ð1þ cÞ; c 6¼ 0:

ð1Þ
The sweeps are stable if �0:5 < c. However it is advantageous to use the parameter satisfying j c j� 1. In that
case, the impact of the initial values u0 and un on the values uk and un�k decays very rapidly (as OðckÞ)) with
increasing the distances kh from the boundaries.

Let UhðxhÞ be the Hilbert space of grid functions uh ¼ ðuj; j ¼ 0;�1;�2; . . .Þ with summable squares. Intro-
ducing the inner product as ðuh; vhÞ ¼ h

P1
j¼�1ujvj, uh; vh 2 U h, it is easy to see that D2 and D0 are self-adjoint

and skew-symmetric operators U h ! U h respectively. It means that ðD2uh; vhÞ ¼ ðuh;D2vhÞ or D2 ¼ D�2 and
ðD0uh; vhÞ ¼ �ðuh;D0vhÞ or D0 ¼ �D�0, uh; vh 2 U h. Operators inequalities for linear operators like Ah P Bh will
be used below meaning that ðAhuh; uhÞP ðBhuh; uhÞ; uh 2 Uh. In particular, one has D2 < 0 and �D2 6 4I .
Skipping the outlines of the underlying theory, the commuting property of all grid operators introduced in
the rest of the paper was used to perform algebraic manipulations considering them as variables.

In the terms of D0 and D2 operators, the inverses of N l and Nr can be cast in the form
N�1
l ¼ I þ cðD0 � D2Þ=2; N�1

r ¼ I � cðD0 þ D2Þ=2: ð2Þ

Denoting by upper indexes ‘‘(0)” and ‘‘(1)” self-adjoint and skew-symmetric components of operators, one can
see that
ðN�1
l Þ
ð0Þ ¼ ðN�1

r Þ
ð0Þ ¼ I � c=2D2 > 0 for c > �:5 and ðN�1

l Þ
ð1Þ ¼ �ðN�1

r Þ
ð1Þ ¼ c=2D0;
the positivity of the self-adjoint components being due to the operators inequality �D2 6 4I .
Thus N�1

r ¼ ðN�1
l Þ
�. The same properties of the Nl and N r operators can be presented in the form of the

following:

Theorem 1. Let c > �0:5. Then
N ð0Þl ¼ N ð0Þr > 0; N ð1Þl ¼ �N ð1Þr
and therefore Nr ¼ N �l .

Proof. We note first that
G ¼ N lN �l ¼ NrN �r ¼ ððI � cD2=2Þ2 � c2D2
0=4Þ�1

; G� ¼ G > 0:
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Using the equality ðN�1
l Þ
� ¼ ðN �l Þ

�1 and the same equality for the N r operator, one can write
Nl ¼ ðNlN �l ÞðN�1
l Þ
�
; Nr ¼ ðN rN �r ÞðN�1

r Þ
�
:

Taking into account Eq. (2), one obtains Nl ¼ GððN�1
l Þ
ð0Þ � ðN�1

l Þ
ð1ÞÞ and N r ¼ GððN�1

l Þ
ð0Þ þ ðN�1

l Þ
ð1ÞÞ which

proves the formulation of the theorem. h
2.1.2. Approximations to grid functionals

Consider ½Lu�j, the action of a linear operator L associated with a node j on a function uðxÞ 2 U of the con-
tinuous argument x (the notation ½:� is used to define the projection operator U ! U h). For example, ½Lu�j can
be viewed as integrals with respect to x between the limits in a vicinity of xj, as values for shifted arguments
uðxj þ khÞ with a fixed parameter k, as derivatives at xj etc.. In the following it will be always supposed that U
is a space of functions which are as smooth as needed for the relevant reasoning.

Following the strategy of using three-point stencils only, suppose that the functional is approximated by three-
point formula which general form can be written as ½Lu�j � Lhuj ¼ ðaI þ dD0 þ eD2Þuj with constants a; d; e.

In [8], one-parameter families of the Compact Upwind Differencing (CUD) operators from [2] were consid-
ered as multiplicative and additive corrections to three-point differencing operator DðsÞ ¼ ðD0 � sD2Þ=2. Fol-
lowing the similar representation, it is possible to construct compact approximations which can be viewed as
additive and multiplicative corrections to Lh. They can be written as ‘‘left” and ‘‘right” operators LlðcÞ and
LrðcÞ of the forms
LlðcÞ ¼ Lh;l þ NlðcÞðalD0 þ blD2Þ; LrðcÞ ¼ Lh;r þ N rðcÞðarD0 þ brD2Þ; ð3Þ

or
 eLlðcÞ ¼ N lðcÞðLh;l þ ~alD0 þ ~blD2Þ; eLrðcÞ ¼ N rðcÞðLh;r þ ~arD0 þ ~brD2Þ; ð4Þ

where al, bl, ar, br , ~al, ~bl, ~ar, ~br are parameters generally depending on c. It is assumed here that different three-
point formulas Lh;l and Lh;r can serve as Lh used to approximate ½Lu�j. The parameters in (3) and (4)are
supposed to be obtained by maximizing the approximation orders of the left and right operators. It can be
accomplished by setting zero as many terms in the Taylor expansion series for the operators actions on suf-
ficiently smooth functions as possible. The multiplicative corrections (4) can be written simply as N lLh;l and
NrLh;r. However, the form (4) is introduced to emphasize the possibility of using standard numerical analysis
formulas for Lh;l and Lh;r with added second-order terms to maximize the resulting orders.

The operators from one-parameter families defined by (3), (4) should not be confused with widely used
compact approximations with fixed numerical coefficients requiring two-diagonal inversions. For example,
the third-order approximation to first derivatives (CUD-3) investigated in depth in [2] looks as
I þ 1

6
D0 �

s
4
D2

� ��1

DðsÞ=h;
its early version with j s j¼ 1 being dated back to seventies [2]. The three-diagonal inverse operator can be
reduced to two-diagonal one simply by setting j s j¼ 2=3 thus removing the free parameter. Two-diagonal
inversions were used also in [10] as well as in other publications. That type of compact approximations cor-
responds to the particular case of derivatives discretizations using multiplicative corrections Eq. (4) with the
particular value c ¼ 1=3.

The merits of the above approximations follow from the inversion procedures equations (1). They are very
small operation count per node and one-sided boundary conditions with negligible impact on calculated nodal
values outside near-boundary regions in the case of j c j� 1. Moreover in some instances there is a possibility
of further increasing the orders of (3), (4). It can be achieved by using the products N lðcÞN lð�cÞ and NrðcÞNrð�cÞ
instead of N lðcÞ and N rðcÞ where �c is another parameter. The orders can be increased if there exists a real func-
tion �c ¼ /ðcÞ annihilating the next term in the expansion series for (3), (4). The resulting operators may be
referred to as ‘‘double left” and ‘‘double right” ones. Examples of that option will be presented below. How-
ever, only left and right operators will be considered in the present paper in the context of the resulting
multioperators.
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Before presenting particular examples of left and right operators, it is worth examining their general prop-
erties. First of all supposing that the parameters with the ‘‘l” indexes are found, their counterparts with the ‘‘r”

indexes can be determined using the following considerations based on the conjugate properties of the
involved operators.

Let Lh;r ¼ L�h;l. Then L�l ¼ Lh;r þ N rð�alD0 þ blD2Þ and it is natural to set ar ¼ �al and br ¼ bl thus obtain-
ing Lr ¼ L�l . If Lh;r ¼ �L�h;l then Lr ¼ �L�l with ar ¼ al and br ¼ �bl: First derivatives approximations fit neatly
in the latter case while those for interpolation/extrapolation operators, for integrals etc. correspond to the for-
mer one.

More information can be obtained by considering the Tailor expansion series for the actions of the oper-
ators on ½u�j; u 2 U where uðxÞ is a sufficiently smooth function. In the following it will be always assumed that
U is a space of functions which are as smooth as needed for the relevant considerations.

Starting with the multiplicative corrections, Eqs. (4) can be rewritten as products of Nl, N r and three-point
operators. Thus
eLl ¼ Nlðq0I þ q1D0 þ q2D2Þ

where coefficients q0; q1; q2 are supposed to be determined from the condition of annihilation of the low order
truncation error terms.

For the sake of convenience, we introduce the following symbolic representation of functions with shifted
arguments:
uðxþ khÞ ¼
X1
l¼0

ðkhÞl

l!
uðlÞx ðxÞ ¼ ekZuðxÞ
where uð0ÞðxÞ ¼ uðxÞ and the operator Z is defined by Z ¼ hðd=dxÞ. In the above expansion, uðxÞ is considered
as an analytic function otherwise it is supposed that the expansion is truncated with adding the corresponding
remainder.

Considering formally Z as a variable and setting x ¼ xj, one can write
eLlðcÞ ¼
q0 e�Z þ q1 þ q2 eZ

1þ cð1� e�ZÞ ¼ F ðZÞ:
Expanding F ðZÞ near Z ¼ 0, one obtains
F ðZÞ ¼
X1
l¼0

~plðcÞZl ð5Þ
where ~plðcÞ; l ¼ 0; 1; 2; . . ., as can be shown, are l-degree polynomials in c. Suppose now that the expansion for
the target functional looks as
½Lu�j ¼ ðg0 þ g1Z þ g2Z2 þ g3Z3 þ g4Z4 þ . . .Þ½u�j:
For example, the only non-zero coefficient is g1 ¼ 1=h in the case of ½Lu�j ¼ ðdu=dxÞx¼xj
¼ Z=h. The coefficients

q0; q1; q2 can be found now from a linear system obtained by equating to zero low-order terms in the expansion
for the truncation error ½Lu�j � eLlðcÞ½u�j. It gives
eLlðcÞ½u�j ¼ ½Lu�j þ
1

6
ðg1 þ 3cðg1� g2ÞÞZ3 þ

X1
l¼2

�plðcÞZlþ2

 !
½u�j
where �plðcÞ are l-degree polynomials in c.
In the case of additive corrections operators Ll , similar considerations lead to a linear system for the coef-

ficients providing OðZ4Þ truncation errors. However, the coefficients satisfying the maximum orders conditions
are not linearly independent. In fact it can be shown the systems are solvable if the coefficients q1 and q2 are
related through
q2 ¼ q1 þ
1þ 3c

6c
g1 � g2 �

1

3
g3
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Thus a lot of correction terms can be introduced satisfying the maximum order conditions. They provide a
unique expression for the Ll operator. It looks as
LlðcÞ½u�j ¼ ½Lu�j þ
1

12
ð12g4 þ 6ð1þ 2cÞg3 � g2 � ð1þ 2cÞg1ÞZ4 þ

X1
l¼2

plðcÞZlþ3

 !
½u�j:
Concerning the right operators eLrðcÞ and LrðcÞ, the above described conjugate properties suggest that the
expansions for their actions differ from those for the left operators only in signs of either odd or even powers
of Z. The latter case corresponds to first derivatives approximations. In fact, the expansions can be obtained
by substituting �Z instead of Z in Eq. (5) or in the similar representation of the Ll operator. Then, for exam-
ple, one has either eLr ¼ F ð�ZÞ or eLr ¼ �F ð�ZÞ. The relation between the expansions is illustrated below by
presenting two terms in the truncation errors for particular examples. Due to the relation, it is advantageous in
some instances to use either sums or differences of left and right operators. When doing so, one can increase
approximation orders in specific cases. Moreover, the resulting expansion series contain either odd or even
powers of Z which can be beneficial when constructing multioperators.

Considering various types of grid functionals, it is well to bear in mind that OðZ3Þ and OðZ4Þ truncation
errors are not necessarily Oðh3Þ and Oðh4Þ ones since the coefficients of initial formulas may contain powers
of h. For example, the coefficient g1 is proportional to h�1 in the case of first derivatives.

2.2. Application to typical grid functionals

Using the general representations (3), (4), it is possible to construct one-parameter compact approximations
to various grid functionals. Below we restrict ourselves to presenting several examples. They do not cover all
possible options and serve merely as illustrations of the approach. The main attention will be paid to the
approximations which can be used for constructing schemes for PDE’s. Though they can be viewed as a novel
class of numerical formulas, we consider them primarily as an important source of basis operators for creating
high-order multioperators.

2.2.1. Midpoint interpolation

In some instances, one needs to calculate grid functions defined on the grid �xh ¼ fxjþ1=2 ¼ ðjþ 1=2Þh; h ¼
const; j ¼ 0;�1;�2; . . .g using those defined on xh. We consider as an example additive corrections to the
‘‘left” and ‘‘right” approximations
uðxjþ1=2Þ � ð3uðxjÞ � uðxj�1ÞÞ=2; uðxj�1=2Þ � ð3uðxjÞ � uðxjþ1ÞÞ=2:
Adding the correction terms with Nl and Nr operators with the coefficients al, bl, ar, br chosen to get the high-
est approximation orders, one can arrive at the following left and right midpoint operators denoted here by Ml

and Mr respectively.
Ml ¼ ð3I=2� T�1=2Þ þ ð3=8� 1=16cÞD2 þ NlD2=16c;

Mr ¼ ð3I=2� T 1=2Þ þ ð3=8� 1=16cÞD2 þ N rD2=16c:
ð6Þ
It can be shown that they are forth-order accurate, the first three terms of the Taylor expansion series being
Ml½u�j ¼ uðxjþ1=2Þ þ
5þ 8c

128
h4uð4Þj �

3þ 16cþ 16c2

256
h5uð5Þj þOðh6Þ;

Mr½u�j ¼ uðxj�1=2Þ þ
5þ 8c

128
h4uð4Þj þ

3þ 16cþ 16c2

256
h5uð5Þj þOðh6Þ; uðkÞj ¼ ½uðkÞx �j:

ð7Þ
It is worth noting that the expansions (7) hold even if c ¼ 0 though the value is not allowed due to the inequal-
ity c 6¼ 0 in Eq. (1).

Taking into account the equalities Nr ¼ N �l and T 1 ¼ T ��1, one can deduce from (6) that Mr ¼ M�
l . It

explains why the terms with the fifth-order derivatives in Eqs. (7) have opposite signs.
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2.2.2. Approximations to shift operators

Extrapolation operators are often needed to create boundary closures for difference schemes. Consider sim-
ple extrapolation formulas
uðxjþ2Þ � 2uðxjþ1Þ � uðxjÞ; uðxj�2Þ � 2uðxj�1Þ � uðxjÞ:

Performing additive corrections, one can get the following forth-order compact approximations denoted by El

and Er.
El ¼ 2T 1 � I þ ð1þ 1=cÞD2 � NlD2=c Er ¼ 2T�1 � I þ ð1þ 1=cÞD2 � N rD2=c:
The operators are related through Er ¼ E�l and the corresponding Taylor expansion series read
El½u�j ¼ uðxjþ2Þ � ð1þ cÞh4uð4Þj þ ðcþ c2Þh5uð5Þj þOðh6Þ;

Er½u�j ¼ uðxj�2Þ � ð1þ cÞh4uð4Þj � ðcþ c2Þh5uð5Þj þOðh6Þ:
ð8Þ
The fifth-order extrapolation formulas can be obtained by using the double left and the double right opera-
tors. The modified extrapolation operators are given by
El ¼ 2T 1 � I þ ð1þ 1=ðcþ �cÞÞD2 � N lðcÞN lð�cÞD2=ðcþ �cÞ;
Er ¼ 2T�1 � I þ ð1þ 1=ðcþ �cÞÞD2 � N rðcÞN rð�cÞD2=ðcþ �cÞ:
The El and Er operators reduce to El and Er for �c ¼ 0. Setting �c ¼
ffiffi
ð

p
1� 2c� 3c2Þ � 1� c, one obtains the

following leading term of the truncation errors for both operators
2c2 ð1þ cÞ
1� c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c� 3c2
p h5uð5Þj
where it is assumed that c 6 1=3.
Small values of j c j allow one to obtain the fourth- or fifth-order accurate boundary values of extrapolated

grid functions which are practically independent of starting values at the corresponding opposite boundaries.

2.2.3. Compact quadrature formulas

Considering integrals over x between limits in the vicinity of xj (for example,
R xjþ1

xj
uðnÞdn,

R xjþ1=2uðnÞdn
xj�1=2

,R xj

xj�1
uðnÞdn), the corresponding compact approximations can be constructed in the form of corrections to

the standard two- or three-point operators. Though the resulting order can be higher than that of standard
formulas, there is no point to viewing them as alternatives to powerful high-order numerical integration tools
like the Simpson and Gauss rules. However, they can serve as basis operators in the case of extremely high-
order multioperators approximations.

Correcting, for example, the trapezoid rule for ½xj�1; xj�, one can obtain the left operator
Ql ¼
1

2
ðI þ T�1Þ �

1

12
NlD2
for which
QlðcÞ½u�j ¼
1

h

Z xj

xj�1

uðnÞdn� 1

24
ð1þ 2cÞh3uð3Þj þ

1

360
ð2þ 15c� 30c2Þh4uð4Þj þOðh5Þ:
Similarly, the expansion series for the right operator
Ql ¼
1

2
ðI þ T 1Þ �

1

12
N rD2
looks as
QrðcÞ½u�j ¼
1

h

Z xjþ1

xj

uðnÞdnþ 1

24
ð1þ 2cÞh3uð3Þj þ

1

360
ð2þ 15c� 30c2Þh4uð4Þj þOðh5Þ:
In the above example, the additive correction increases approximation order of the trapezoid rule. In the con-
text of multioperators, it makes sense to consider also compact approximations which order is less than that of
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an initial formula. As another example, consider the following multiplicative correction to the modified Simp-
son rule.
Q1;l ¼ Nl
1

3
ð4I þ T 1 þ T�1Þ � cðD0 � D2Þ

� �
; Q1;r ¼ N r

1

3
ð4I þ T 1 þ T�1Þ � cðD0 þ D2Þ

�
Þ:
It gives in the case of the left operator
Q1;lðcÞ½u�j ¼
1

h

Z xjþ1

xj�1

uðnÞdn� 1

3
ch3uð3Þj þ

1

90
ð1þ 15cþ 30c2Þh4uð4Þj þOðh5Þ: ð9Þ
Thus the approximation order of the Simpson rule is not increased. It can be increased however when using
additive corrections with the double left and double right operators.
Q1;l ¼
1

3
ð4I þ T 1 þ T�1Þ þ D2 � NlðcÞN lð�cÞD2

Q1;r ¼ N r
1

3
ð4I þ T 1 þ T�1Þ þ D2

� �
� N rðcÞNrð�cÞD2:
Setting Q ¼ ðQ1;l þ Q1;rÞ=2 and
�c ¼ 1

60

ffiffiffi
5
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

53� 180c� 540c2
p

� 30c� 15
� �

;

with c < c� � :188 one obtains
QðcÞ½u�j ¼
1

h

Z xjþ1

xj�1

uðnÞdnþ h6u6ðcÞu
ð6Þ
j þ h8u8ðcÞu

ð8Þ
j þOðh10Þ
where the lengthy expressions for u6ðcÞ and u8ðcÞ are not presented here. One can see that the Q operator is
the sixth-order accurate one. Besides, its expansion series contain only even order powers of h.

2.3. Approximations to convection-type terms

2.3.1. Approximation to first derivatives

As in the case of CUD operators from [2], we consider three-point operator DðsÞ ¼ ðD0 � sD2Þ=2 with a free
parameter s as a generic operator Lh. It is advantageous to use the additive correction approach (3) to obtain
third-order differencing formulas. Adding the correction terms with NlðcÞ and N rðcÞ operators and following
the above described procedure, one arrives at the expressions for the left and right differencing operators Dl

and Dr given by
Dl ¼
1

2
D0 �

1

3c
D2

� �
þ 1

6c
N lD2; Dr ¼

1

2
D0 þ

1

3c
D2

� �
� 1

6c
N rD2:
The corresponding Taylor expansion series read
Dl½u�j=h ¼ ½ux�j þ
1

12
þ c

6

� �
h3uð4Þj �

1

30
þ c

6
þ c2

6

� �
h4uð5Þj þOðh5Þ

Dr½u�j=h ¼ ½ux�j �
1

12
þ c

6

� �
h3uð4Þj �

1

30
þ c

6
þ c2

6

� �
h4uð5Þj þOðh5Þ

ð10Þ
One can verify that the coefficients for OðhkÞ terms not included in (10) are ðk � 2Þ-th order degree polynomi-
als in c. One can verify also that the expansions for Dl and Dr differ only in signs of the coefficients for the odd
powers of h.

The N l and Nr operators can be used also to get ‘‘mixed” fourth-order approximations to ou=ox based on
midpoint operators. Integrating the equality g ¼ of =ox, one obtains the identically accurate formula
Z xjþ1=2

xj�1=2

g dx ¼ fjþ1=2 � fj�1=2 ð11Þ
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Using, for example, the operator Ml from Eq. (6) to approximate the right hand side of (11) and the operator
hðI þ D2=24Þgj as a quadrature formula for the integral in its left hand side, one obtains the following left
approximation Dl to the derivative.
Dl½u�j=h ¼ ½ux�j þ
26þ 45c

720
h4f ð5Þj þ Oðh5Þ;

Dl ¼ ðI þ D2=24Þ�1ðE � T�1ÞMl
Using Mr in (11), one obtains the similar expression for the right operator Dr ¼ ðI þ D2=24Þ�1ðT 1 � IÞMr. The
corresponding expansion differs from that for Dl only in signs of the coefficients for odd powers of h.

The calculations with the fourth-order operators Dl;Dr require two-diagonal and three-diagonal inversions.
Thus they are more computationally expensive than the third-order Dl and Dr operators.

The pairs DlðcÞ; DrðcÞ and DlðcÞ; DrðcÞ) are similar to the CUD pairs LðsÞ and Lð�sÞ from [2] in that they
can be used for constructing upwind biased approximations. However, changing their ‘‘orientation” is due to
changing the index l by r or vice versa with the same values of the parameter c. Mathematically, this property
can be expressed in the form of the following

Theorem 2. Let Dl and Dr : U h ! U h be left and right operators Dl;Dl and Dr, Dr, respectively defined for
c > �0:5. Then
D�l ¼ �Dr; Dl > 0
Proof. Consider, for example, the pair Dl and Dr. Introducing the conjugate operators, the left operators can
be cast in the form
Dl ¼
1

2
D0 �

1

6c
D2 þ

1

6c
NlN �l ðN �l Þ

�1D2;
Similarly, the right operators look as
Dr ¼
1

2
D0 þ

1

6c
D2 �

1

6c
N rN �r ðN �r Þ

�1D2:
Using the previous notation
G ¼ N lN �l ¼ NrN �r ; G ¼ G� > 0
and the expressions (2)for N�1
l and N�1

r , one obtains the skew-symmetric and the self-adjoint components of
Dl
Dð1Þl ¼ Dð1Þr ¼
1

2
D0 �

1

12
GD0D2; Dð0Þl ¼ �Dð0Þr ¼ �

1

6c
D2 I � G I � c

2
D2

� �� �
:

Thus one has Dl ¼ �D�r .
To prove the corresponding operators inequality, it is sufficient to estimate operator Dð0Þl . It can be written

as
�D2G
6c

G�1 � I � c
2
D2

� �� �
:

Using the expression for G�1 and the equality D2
0 ¼ 4D2 þ D2

2, one obtains upon simple manipulations
Dð0Þl ¼ G

12
ð1þ 2cÞD2

2 > 0.
The proof for the Dl and Dr can be accomplished in the similar manner.
Positivity of the operators allows one to construct upwind-biased schemes. h
2.3.2. Application to conservation laws

Consider the model equation
ut þ f ðuÞx ¼ 0: ð12Þ
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The standard approach to construct an upwind semi-discretized scheme is to use for the x-derivative Dl and Dr

operators if f 0ðuÞ > 0 and f 0ðuÞ < 0 respectively. It will be conservative approximation since the actions of the
Dl;Dr operators on a grid function f can be presented as the difference of numerical fluxes across midpoint cell
boundaries. Considering, for example, Dl, one can write
Dlfj ¼ ðql;jþ1=2 � ql;j�1=2Þ;

ql;jþ1=2 ¼
1

2
fjþ1 þ fj �

1

3c
ðfjþ1 � fjÞ

� �
� 1

6c
Nlðfjþ1 � fjÞ:
In the case of Dl operator, one has the left midpoint numerical fluxes given by ql;jþ1=2 ¼ ðI þ D2=24Þ�1Mlfj.
The above described scheme requires switching from left to right operators or vice versa. Besides it is not in

general an entropy-consistent one. Thus it is advantageous, as in [8], to use the flux splitting
f ðuÞ ¼ F þ þ F �; F þ ¼ 1

2
ðf ðuÞ þ CuÞ; F � ¼ 1

2
ðf ðuÞ � CuÞ; C ¼ const > 0:
Introducing
Dþ ¼ ðDl þDrÞ=2; D� ¼ ðDl �DrÞ=2;
the conservative entropy-consistent scheme can be written in the index-free form as
ou
ot
þ 1

h
ðDþF þ þ D�F �Þ ¼ 0: ð13Þ
Scheme (13) does not require the operators switching. It is a scheme with a positive operator (in the frozen
coefficients sense) and hence is stable in the discrete L2 norm. It can be presented in the equivalent form
ou
ot
þ 1

2h
ððDl þDrÞf ðuÞÞ þ CðDl �DrÞu ¼ 0: ð14Þ
In Eq. (14) the sum and the difference of the operators can be readily recognized as skew-symmetric and po-
sitive self-adjoint operators respectively if it is supposed that f ðuÞ ¼ au; a ¼ const.

The extensions of the scheme to systems of conservation laws and multidimensional problems are outlined
in [8]. In all cases, the Runge–Kutta time stepping or iterative procedures can be applied to form fully discret-
ized schemes.
3. Multioperators

3.1. General forms

We return to the one-parameter operators families defined by Eqs. (3) or (4) in the previous section. Their
general properties discussed therein show that the coefficients in the Taylor expansion series for the operators
actions are polynomial in the parameter c of successively increased degrees. In particular, the above examples
present the first two coefficients as the first and second degree polynomials in c. It suggests using operators
from the families as basis operators composing uniquely defined multioperators.

At this point, it is worth reminding the general multioperators approach [1]. It is based on the assumption
that there exists an one-parameter operators family LhðsÞ with the expansion
½Lf �j ¼ LhðsÞ½f �j þ
XmþM�2

k¼m

akjckðsÞhk þOðhmþM�1Þ ð15Þ
(the high-order derivatives are included in the coefficients akj), satisfying the following. For fixed distinct
values of s (s ¼ si; i ¼ 1; 2; . . . ;M), the matrix A defined by

A ¼ fbijg; b1j ¼ 1; bij ¼ cmþi�2ðsjÞ i ¼ 2; 3; . . . ;M ; j ¼ 1; 2; . . . ;M does not degenerate.
If the above one-parameter family of grid operators LhðsÞ do exist, the procedure of constructing multiop-

erators starts from solving the linear system
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Ag ¼ r; g ¼ ðc1; c2; . . . ; cMÞ
T
; ð16Þ
where M-component vector r is given by r ¼ ð1; 0; 0; . . . 0Þ. Once c1; c2; . . . ; cM coefficients are obtained, the
final step is forming the linear combination LM ¼

PM
i¼1ciLhðsiÞ referred to as multioperator in which LhðsiÞ

may be viewed as basis operators.
Since the c coefficients are a partition of unity, the summation over i of the equations obtained from Eq.

(15) by setting s ¼ si and multiplying by ci preserves the resulting left hand side. At the same time, the sum of
the second terms in the right hand sides of the equations vanishes. Thus one has LM ½u�j ¼ ½Lu�j þOðhmþM�1Þ.

Since M is supposed to be arbitrary, the multioperator’s action is the arbitrary-order approximation to the
target grid functional. Clearly the above procedure can be applied to the case of the expansions for LhðsÞ½u�j
containing either odd or even powers of h thus increasing the resulting multioperators orders for fixed M.

In the present case, we set s ¼ c and consider the operators of the previous section as the required one-
parameter families. Following the general procedure and denoting by Ll either of the two mth-order left oper-
ators, we fix M different values c1; c2; . . . ; cM and construct the left linear combination
LM ;l ¼
XM

i¼1

cðlÞi LlðciÞ;
where coefficients cðlÞi ; i ¼ 1; 2; . . . ;M is a partition of unity. To annihilate M � 1 expansion terms, the coeffi-
cients are required to satisfy the linear system
XM

i¼1

cðlÞi ¼ 1;
XM

i¼1

p1ðciÞcðlÞi ¼ 0;
XM

i¼1

p2ðciÞcðlÞi ¼ 0; . . . ;
XM

i¼1

pM�1ðciÞcðlÞi ¼ 0; ð17Þ
where pk; k ¼ 1; 2; . . . ;M are kth-degree polynomials served as coefficients in the Taylor expansion series for
LlðciÞ½u�j. Successively extracting from Eqs. (17) equalities for the sums

PM
i¼1cic

ðlÞ
i ;

PM
i¼1c2

i c
ðlÞ
i ; . . . ;PM

i¼1cM�1
i cðlÞi , one arrives at a system with the Vandermonde matrix
XM

i¼1

cðlÞi ¼ 1;
XM

i¼1

cic
ðlÞ
i ¼ r1;

XM

i¼1

c2
i c
ðlÞ
i ¼ r2; . . . ;

XM

i¼1

cM�1
i cðlÞi ¼ rm; ð18Þ
where r1; r2; . . . ; rM�1 are numerical constants defined by the coefficients of pkðcÞ.
The similar system arises when constructing the right operator LM ;r based on linear combinations

LM ;r ¼
PM

i¼1c
ðrÞ
i LrðciÞ where Lr is either of the two right operators from Eqs. (3) and (4). Having in mind the

invertibility of the Vandermonde matrices, the following statement is true.

Theorem 3. Let ci < �:5; i ¼ 1; 2; . . . ;M be distinct real numbers while cðlÞi ; cðrÞi ; i ¼ 1; 2; . . . ;M satisfy (18) with

the right hand sides ri ¼ rðlÞi and ri ¼ rðrÞi respectively. Then there exist uniquely defined linear combinations

LM ;l ¼
PM

i¼1c
ðlÞ
i LlðciÞ; LM ;r ¼

PM
i¼1c

ðrÞ
i LrðciÞ for which
LM ;l½u�j ¼ ½Lu�j þOðhmþM�1Þ; LM ;r½u�j ¼ ½Lu�j þOðhmþM�1Þ:
The combinations form left and right multioperators. As evident from the expressions for the basis oper-
ators considered in the previous section, the left and the right basis operators differ only in signs of their either
skew-symmetric or self-adjoint components. It means that (as illustrated by Eqs. (7)–(10)) the polynomial
pkðcÞ in the corresponding Taylor expansion series are the same while the series differ only in signs of their
terms. Hence it follows that the initial linear system (17) holds for both left and right basis operators. In turn,
it leads to equalities which can be summarized in the form of the following

Theorem 4. Let ðLl; LrÞ be the pairs of the left and right basis operators. Then
cðlÞi ¼ cðrÞi ; i ¼ 1; 2; . . . ;M ;
and
LM ;l ¼ �L�M ;r if Ll ¼ �L�r ; LM ;l ¼ L�M ;r if Ll ¼ L�r
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As in the case of other types of multioperators, the actions of LM ;l LM ;r on known grid functions can be cal-
culated simultaneously and independently when using M parallel processors. In all cases, the coefficients ci can
be obtained in analytical forms without solving (18) numerically.
3.1.1. Choice of the parameters

Though existence of arbitrary-order multioperators for any set of distinct values of c exceeding �.5 is guar-
anteed, some limitations on their choice can be important.

First of all, conditions numbers of the Vandermonde matrices dramatically increase with increasing M, the
number of the parameters values. Though it does not influence analytical solutions for the c coefficients, their
absolute values can be quite large thus adversely affecting round-off errors. Practically, it means that 64-bits
arithmetics may be insufficient to get solutions errors like 10�15 for M ¼ 5. To reduce the absolute values
increasing with M, it is worth choosing ci as the zeroes of the Mth-order Chebyshev polynomials for chosen
intervals ðcmin; cmaxÞ. The lesser are values of j ci j the greater is the effect of decaying influence of boundary
conditions in (1). However, the excessively small values may considerably increase condition numbers of
(18) even in the case of the Chebyshev distribution.

Once the resulting multioperators LM ;lðcmin; cmaxÞ, LM ;rðcmin; cmaxÞ are defined, cmin; cmax can be used as
parameters controlling some desirable properties in particular cases. For example, behavior of the Fourier
transforms of the multioperators in ranges of the highest wave numbers admitted by meshes may be of impor-
tance in the case of spatial discretizations of hyperbolic conservation laws. Another example is using the
parameters to minimize truncation error leading term (terms) of the multioperators.

3.1.2. Central multioperators

Operators LM ;l and LM ;r are essentially non-central ones. This property can be useful in the case of extrap-
olation procedures, when constructing upwind schemes etc.. However, in certain instances it is more appro-
priate to use central approximations. Examples are discretization of second derivatives and quadratures.
There are two ways to obtain central multioperators.

The first one is to use their combinations ðLM ;l þ LM ;rÞ=2 or ðLM ;l � LM ;rÞ=2, the latter case being appropriate
for creating dissipative mechanisms in the case of first derivatives.

Another way is to use the combinations of the central operators L0 ¼ ðLlðcÞ þ LrðcÞÞ=2 or L1 ¼ ðLlðcÞ�
LrðcÞÞ=2 as generators of basis operators. Fixing M values of c, one obtains the basis operators
L0ðciÞ; L1ðciÞ; i ¼ 1; 2; . . . ;M allowing to annihilate more powers of h in the corresponding truncation errors
than in the case of LlðcÞ and LrðcÞ. The expansions are given by Eq. (5) with missed either odd or even powers
of Z. Some penalty for this advantage is the necessity to investigate domains in free parameters spaces for
which the multioperators do exist. Luckily, the solvability of the linear systems for the c coefficients can be
checked numerically for any set of parameters.

3.2. Examples of multioperators

Using the above described general procedure, one can create multioperators for various grid functionals. In
particular, one-parameter quadrature, interpolation and extrapolation formulas of Section 2 can be converted
into prescribed-order ones using expansions Eqs. (9), (7) and (8) with added (if needed) the next terms. As an
illustration, we consider simple cases of the sixth-order extrapolation and numerical integration multioperators
(M ¼ 3) for which the information given in Eqs. (8) and (9) is sufficient to get the required c1; c2; c3 coefficients.

3.2.1. Extrapolation operators

Inspecting the two terms in the truncation error in Eq. (8), one can see that the first one generates equationP3
i¼1cici ¼ �1. Taking it into account, one obtains using the second term another equation

P3
i¼1c2

i ci ¼ 1. With
the partition of unity condition, it gives the system whose analytical solution is
c1 ¼
1þ c3 þ c2 þ c3c2

ðc1 � c2Þðc1 � c3Þ
; c2 ¼ �

1þ c1 þ c3 þ c1c3

ðc2 � c1Þðc2 � c3Þ
; c3 ¼

1þ c1 þ c2 þ c1c2

ðc3 � c1Þðc3 � c2Þ
:
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Considering the further term in the expansion (8) for c ¼ c1; c ¼ c2; c ¼ c3, one can obtain the coefficient for
the leading Oðh6Þ term in the multioperators truncation error. Thus one has, for example, in the case of the left
multioperator
Table
Accura

N

Isimp

I5

k

I7

k

EM ;l½u�j ¼
X3

i¼1

ciElðciÞ½u�j ¼ uðxjþ2Þ þ ð1þ c1Þð1þ c2Þð1þ c3Þh6uð6Þj þOðh7Þ:
Left extrapolation multioperators can be used for formulating boundary conditions at right boundaries.

3.2.2. Multioperators quadratures

We choose the corrections to the Simpson rule, that is ðQ1;l;Q1;rÞ as the basis operators. From the Taylor
expansion series (9) one can easily obtain the right hand sides of (18) in the case M ¼ 3. They are (1, 0, �1/30).
Retaining more terms in (9), one can construct desired order approximations to

R xjþ1

xj�1
uðnÞdn. Consider an inte-

gration interval ½a; b�. Taking advantage of the decaying influence of boundary conditions, one can use left
multioperators for ½ðb� aÞ=2; b� and right multioperators for ½a; ðb� aÞ=2� with the basis operators actions
as starting values in the procedures Eq. (1). As an illustration, the integration errors for the Simpson formula,
the 5th- and 7th-order multioperators quadratures (denoted by I simp; I5 and I7 respectively) are presented in
Table 1 with the corresponding orders estimates k for several mesh sizes h ¼ 1=N . In the calculations, more
or less arbitrary chosen the uniform and the Chebyshev distributions with cmin ¼ :08; cmax ¼ :12 and
cmin ¼ :01; cmax ¼ :1 were used for the fifth-order and the seventh-orders multioperators respectively.

As seen, the fifth-order multioperator outperforms the sevenths-order one if N ¼ 8 but the latter shows
striking increase of accuracy when N increases. Its loss of accuracy for M ¼ 8 seems to be due to the large
numerical coefficients for the truncation errors which are considerably greater for M ¼ 5 than those for
M ¼ 3 as a result of increasing condition numbers of system (18).

3.3. Multioperators for derivatives discretizations

Using the above described differencing operators Dl;Dr;Dl;Dr as basis ones, the procedure for constructing
the corresponding multioperators is quite straightforward. Following the standard approach, the ðM þ 2Þ-
order left and right multioperators based, for example, on the former pair with a set c1;c2; . . . ; cM read
DM ;l ¼
XM

i¼1

ciDlðciÞ; DM ;r ¼
XM

i¼1

ciDrðciÞ:
However the positivity of the basis operators does not necessary mean that the resulting multioperators are
also positive. To guarantee their positivity, a search for ‘‘admissible” intervals ðcmin; cmaxÞ is needed. Supposing
that the intervals are found, the multioperators can be used to approximate the flux function in Eq. (12) in the
flux-splitted form. As a result, the semi-discretized scheme for Eq. (12) can be written using the index-free
notations as
ut þ
1

2h
ðDM ;l þ DM ;rÞf ðuÞ þ

C
2h
ðDM ;l � DM ;rÞu ¼ 0; ð19Þ
where C > 0 is a constant. The sum and the difference of the multioperators are skew-symmetric and self-ad-
joint operators respectively, the latter being positive if DM ;l is positive.
1
cy of multioperators-based quadrature formulas

8 16 32 64

5.81e�6 3.28e�7 2.05e�8 1.28e�9
2.38e�7 1.35e�8 4.77e�10 1.57e�11

4.13 4.82 4.92
2.18e�4 1.83e�8 7.99e�13 7.19e�15

13.5 14.5 6.79
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Comparing with the differencing multioperators described in [8], more parameters ci are needed to obtain a
given approximation order resulting in larger values of the c coefficients. We do not follow the above strategy
in the present paper. Instead, we use below the basis operators generated by the central skew-symmetric and
the self-adjoint operators D1ðcÞ ¼ ðDl þ DrÞ=2h and D2ðcÞ ¼ ðDl � DrÞ=2h defined by left and right differenc-
ing operators of Section 2 with possibly different sets of parameters. As mentioned, the advantage of the
approach follows from the structure of the corresponding Taylor expansion series containing either odd or
even powers of h. Thus larger approximation orders can be obtained for fixed numbers of parameters. Besides,
one thus has a good opportunity to control efficiently the dispersion and dissipation properties of the resulting
schemes.

As an illustration, we consider the pair Dl;Dr with the expansion series (10). The symbolic representation of
the skew-symmetric operator then reads
D1ðcÞ ¼ Dx þ
X1
k¼1

p2kðcÞh2kþ2D2kþ3
x ;Dx ¼ o=ox:
Fixing M values c1; c2; . . . :; cM , one obtains the linear system
XM

i¼1

ci ¼ 1;
XM

i¼1

p2ðciÞci ¼ 0;
XM

i¼1

p4ðciÞci ¼ 0; . . . ;
XM

i¼1

p2M�2ðciÞci ¼ 0; ð20Þ
where p2ðcÞ is given by the coefficient for h4 in series (10). Its solution (if exists) defines the skew-symmetric
multioperator
D1;M ¼
XM

i¼1

ciD1ðciÞ; D1;M ½f ðxÞ�j ¼ ½fx�j þOðh2Mþ2Þ:
Similarly, the expansion for the self-adjoint basis operator looks as
D2ðcÞ ¼
X1
k¼1

p2k�1ðcÞh2kþ1D2kþ2
x :
Fixing possibly other set �c1;�c2; . . . ;�cM , the linear system for the coefficients �ci of the self-adjoint multioperator
D2;M 	 h2Mþ1D2Mþ2
x

is
 XM

i¼1

�ci ¼ 1;
XM

i¼1

p1ð�ciÞ�ci ¼ 0;
XM

i¼1

p3ð�ciÞ�ci ¼ 0; . . . ;
XM

i¼1

p2M�3ð�ciÞ�ci ¼ 0; ð21Þ
where �p1ðcÞ is given by the coefficient for h3 in series (10).
Systems (20) and (21) do not reduce to those of the Vandermonde type so their solvability should be either

investigated or simply checked for particular sets of the parameters. Assuming some distributions
ci ¼ ciðcmin; cmaxÞ and �ci ¼ �cið�cmin;�cmaxÞ, one can use cmin; cmax and �cmin;�cmax to control the multioperators spec-
tral properties. In particular, the last pair should be chosen to guarantee positivity of D2;M .

Using both multioperators, the x-derivative in Eq. (12) can be approximated now as
½f ðuÞx�j ¼ D1;M ½f �j þ CD2;M ½u�j þOðh2Mþ2Þ; C ¼ const > 0;
with the D2;M operator playing the role of the built-in filter of high frequency numerical noise. Thus the sum
and difference of the multioperators in Eq. (19) are changed by the multioperators based on the sum and the
difference of the basis operators.

Setting Dþ ¼ D1;M and D� ¼ D2;M in Eq. (13) and using extensions outlined in Subsection 2.3, one can
construct flux-splitting forms of multioperators schemes for equations with convection terms, for systems
of conservation laws, for the fluid dynamics equations etc. It is easy to show that their semi-discretized ver-
sions are conservative, entropy-consistent and stable in the discrete L2 norms (in the frozen coefficients
sense).
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Considering Eq. (12) with f ðuÞ ¼ au; a ¼ const and performing the Fourier transforms for D1;M and D2;M ,
one can estimate the spectral contents of the normalized numerical phase velocity r defined as the ratio of the
numerical phase velocity to the exact one a and the amplitude errors introduced by D2;M .

As an example, we consider the twelfth-order skew-symmetric multioperator D12 ¼ D1;Mðc1; c2; c3; c4; c5Þ
depending on chosen parameters ci. To construct it, it is sufficient to solve for c1; c2; c3; c4; c5 the system
obtained from Eqs. (20) by setting M ¼ 5. In this way, the Oðh4Þ;Oðh6Þ;Oðh8Þ;Oðh10Þ terms are annihilated.
The system is not of the Vandermonde type so we fix the uniform parameters distribution considering
c1 ¼ cmin and c5 ¼ cmax as controlling parameters.

Fig. 1 shows the relative numerical phase velocity in the case of the above advection equation semi-discret-
ized with D12ðcmin; cmaxÞ. The function rðaÞ in the Figure is defined by rðaÞ ¼ ImD̂1;MðaÞ=a where D̂1;MðaÞ and
a ¼ kh are the Fourier transform of D1;M and the dimensionless wave number respectively. The deviations of
rðaÞ from unity, er ¼j 1� r j, characterize the phase errors. The function er 
 105 is shown by the dashed line
in Fig. 1. The uniform distribution with cmin ¼ c1 ¼ �:404 and cmax ¼ c5 ¼ :41 was chosen more or less arbi-
trary by observing the rðaÞ function. As seen, the phase errors satisfy er < 10�5 for a� < 1:7 and er < 7
 10�5

for a� < 2:1.
Using two multioperators for constructing numerical fluxes allows one to use optimization procedures inde-

pendently for amplitude and phase errors. For instance, one can formulate the following problem. Given an
interval ½0; a��, find ðcmin; cmaxÞ for which max½0;a��er ¼ min. Solving the optimization problems as well as
detailed investigation into the relevant schemes are beyond the scope of the present paper.

Instead, we restrict ourselves to presenting the results of calculations with the D12 operators in the case stan-
dard periodic problem for the Burgers’ equation (see, for example, [11]) considered in the companion paper
[8]. It reads
Fig. 1.
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¼ 0; �1 6 x 6 1

uð0; xÞ ¼ 1þ 0:5 sinðpxÞ
The exact solution up to certain time moment t ¼ t� is smooth. It can be obtained using an iterative procedure
described in [11] with the machine precision.

The calculations were carried out with the D12 operator for x-derivatives, the dissipation multioperator
being excluded by setting C ¼ 0. The fourth-order Runge–Kutta time stepping was found to be sufficient
to guarantee stability of the scheme for the present particular example and relatively small time interval t 6 :3.

In Table 2, the maximum norm of the solution errors at t ¼ :3 < t� and the corresponding estimates of the
mesh convergence orders k are presented for numbers of nodes N ¼ 16; 32; . . . ; 256. For comparison, the sim-
ilar results obtained with the ninth-order multioperators scheme from [8] are also included in the Table as
reference ones. The scheme is based on a version of the fifth-order CUD operator and denoted here by L59.
Twelfth-order multioperator for advection equation: normalized numerical phase velocity and phase error vs. dimensionless wave
r.



Table 2
Maximum norms of solution errors for the Burgers’ equation

N 16 32 64 128 256

L4 1.80e�2 2.486e�3 2.052e�4 1.40e�5 9.30e�7
kc 2.6 3.6 3.9 3.9
L59 1.86e�3 2.16e�5 5.02e�8 4.7e�11 9.96e�14
kc 6.4 8.7 10.0 9.2
L10 1.55e�3 7.56e�6 1.37e�8 6.16e�12 1.35e�14
k 7.7 9.1 11.1 8.8
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As seen, both schemes show remarkably high accuracy, the twelfth-order one being several times more accu-
rate than the ninth-order one in the case of the finest mesh. It is partly due to the ninth-order dissipation mech-
anism of the latter with the dissipation constant C ¼ 1 used to deal with the discontinuous solution at t > t�.
However, calculations with L59 and C ¼ 0 showed that the dissipation can decrease solution errors only by a
factor Oð1Þ for the considered relatively small time interval.

In the Table, solution errors in the case of the fourth-order basis operators denoted here by L4 illustrate the
striking difference between relatively low- and high-order multioperators approximations.

The considered case does not bear relation to very high values of the dimensionless wave numbers a ¼ kh
supported by the meshes. To illustrate the ability of the multioperator-based approximation to resolve very
small scales (a > p=2), the calculations for the benchmark problem proposed in [12] were carried out (the
problem was considered also in our previous publication [8]). The initial value problem was formulated as fol-
lows. The advection equation
F

ou
ot
þ ou

ox
¼ 0
with the initial condition
uð0; xÞ ¼ ½2þ cosðbxÞ�½expð�2 lnð2Þðx=10Þ2Þ�

should be discretized using the uniform mesh with h ¼ 1 and numerically solved to provide the comparison
with the exact solution at t ¼ 400 and t ¼ 800. In view of the above prescribed mesh size, the parameter b
is equal to our parameter a. The value was used in the calculations. Moreover the greater value a ¼ 1:9
was used as well. Though a ninth-order multioperators-based dissipation operator was created to deal with
the problem, it was found that (surprisingly) the above D12 skew-symmetric operator can do the job alone.
The comparisons with the exact solutions at t ¼ 800 are presented in Figs. 2 and 3 for a ¼ 1:7 and a ¼ 1:9
respectively. As seen, there is no visual difference between the exact and numerical solutions in both cases.
ig. 2. Linear advection equation: comparison of the exact (solid line) and numerical (dots) solutions at t ¼ 800 for a ¼ 1:7.



Fig. 3. Linear advection equation: comparison of the exact (solid line) and numerical (dots) solutions at t ¼ 800 for a ¼ 1:9.
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It should be emphasized that no in-depth optimization was used. In fact, the cmax ¼ :41 was chosen arbitrary
while cmin was tuned by observing the dispersion errors curves.
3.4. Using extrapolation multioperators for constructing high-order boundary conditions

As follows from the definition of multioperators, calculations of their actions on known grid functions
reduce to calculations of underlying basis operators actions on the functions. As far as basis compact approx-
imations are concerned, the required boundary conditions can be readily constructed without decrease of
approximation orders. They are needed to perform operators inversions and should not be confused with
boundary conditions coming from mathematical formulations.

Now the problem arises how to formulate them in such a way that the summation over i with ci coefficients
provides the claimed multioperators orders at boundary (and hence, near boundary) nodes. To explain the
problem, it is worth emphasizing that the estimates of multioperators approximation orders are based on
the implicit assumption that the Taylor expansion series Eq. (15) can be constructed for each node of compu-
tational domains. Unfortunately, it is not the case of boundary grid points if bounded domains are considered
without imposing periodicity conditions. In general, the introduced boundary operators produce expansions
with other high-order terms which are not annihilated as a result of the summation with the ci coefficients.
Since the coefficients are a partition of unity, standard boundary closers result in the multioperators orders
near boundaries which are equal to those of the basis operators.

A possible way to handle the problem is to use high order extrapolation operators. The idea behind this can
be explained in the following way. Suppose one can extrapolate the results of inversions of operators to the
boundary node j ¼ 0 with as high order as needed. It means that the corresponding Taylor expansion series
are extrapolated as well thus allowing to annihilate the low order terms.

To be specific, consider numerical differentiation procedure for a known grid function uj; j ¼ 0; 1; 2; . . . ;N
performed with the left ðM þ 2Þ-order multioperator Dl;M for which the starting values w0ðciÞ are required to
calculate the grid function wjðciÞ ¼ NlðciÞD2uj; i ¼ 1; 2; . . . ;M . Clearly, wjðciÞ are linear functions in w0ðciÞ
obtained as the output of the left sweep (1) for each ci. Choosing another set �c1;�c2; . . . ;�cM (in particular,
the ðciÞ set can be chosen), one can construct the right shift multioperator Er;M defining for sufficiently smooth
vðxÞ the extrapolation procedure vðxjÞ ¼ Er;M vðxjþ1Þ þOðhMþ3Þ. Performing the right sweeps (1) for
i ¼ 1; 2; . . . ;M to calculate the extrapolated values we

jðciÞ ¼ Er;M wjþ1ðciÞ with the right starting values, say,
with wN�1ðciÞ, one obtains we

0ðciÞ which are practically independent of the starting conditions. Due to the lin-
earity of Er;M , they are also linear functions in w0ðciÞ. Thus we

0ðciÞ ¼ aðciÞw0ðciÞ þ bðciÞ where the coefficients a

and b can be obtained by giving two distinct values to w0ðciÞ (for example, 0 and 1). Setting w0ðciÞ ¼ we
0ðciÞ,

one obtains the target values w0ðciÞ ¼ b=ð1� aÞ.



Table 3
Local near-boundary errors for numerical differentiation for cosðpxÞ; x 2 ½0; 1� with 5th-order multioperator

Node number 1 2 3 4 5 6 7

N = 16, A, e1 = 2.8e�5 �6.1e�5 �5.4e�5 �4.8e�5 �4.2e�5 �3.6e�5 �3.0e�5 �2.2e�5
N = 16, B, e1 = 1.0e�4 0 5.2e�4 �6.0e�4 �2.0e�4 �6.7e�5 �3.5e�5 �2.3e�5
N = 32, A, e1 = 8.7e�7 �1.6e�6 �1.5e�6 �1.5e�6 �1.4e�6 � 1.4e�6 �1.3e�6 �1.3e�6
N = 32, B, e1 = 5.9e�6 0 6.9e�5 �7.1e�5 �2.2e�5 �5.2e�6 �1.9e�6 �1.34e�6
N = 64, A, e1 = 2.8e�8 �4.6e�8 �4.6e�8 �4.6e�8 �4.5e�8 �4.5e�8 �4.4e�8 �4.4e�8
N = 64, B, e1 = 3.5e�7 0 8.8e�6 �8.8e�6 �2.6e�6 �5.3e�7 �1.2e�7 �5.5e�8

Rows B and A correspond to boundary conditions for the inverting procedures with exact values at node j ¼ 1 and multioperators-
extrapolated values at node j ¼ 0, e1 stands for l1 norm of the errors.
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The calculations were carried out for uðxÞ ¼ cosðpxÞ; x 2 ½0; 1� using the fifth-order DM ;l operator and the
sixth-order right extrapolation operator EM ;r (M ¼ 3). The set ðc1; c2; c3Þ ¼ ð:05; :1; :15Þ was chosen in both
cases.

In Table 3, the columns contain the absolute values of errors at the nodes xj ¼ jh; j ¼ 0; 1; 2; . . . ; 7; h ¼ 1=N
where N is the total number of grid points. There are two rows for each value of N. The first row corresponds
to the results of the above described technique while the second one contains the data obtained by using the
exact derivative value at x ¼ h and therefore the value of NlD2½u� at x ¼ x1 as a starting one. The l1 norms of
the numerical differentiation errors denoted by e1 are also presented in the table.

As seen, the fifth-order is excellently preserved everywhere in the vicinity of x ¼ 0 if the multioperators
extrapolation procedure is used. In contrast, the exact boundary value gives zero error at x ¼ h but only
the third-order local errors at near-boundary nodes thus increasing the l1 norms.

Upon inspecting the table, another observation concerns with the decaying influence of the ‘‘wrong”

boundary condition at x ¼ h. One can see that the differentiation errors in both cases are very close to each
other at some distance from the boundary.

4. Conclusions and discussion

A novel one-parameter families of compact approximations with two-points inverse operators for various
grid functionals are described. They may be viewed as left and right operators depending on the orientation of
the corresponding stencils in respect to center nodes. Their merits are due to very small operation counts per
node and the possibility of rapidly decaying influence of boundary conditions needed for inversion procedures.
Though they can be used as a tool for increasing orders of standard three-point formulas, their main property
in the context of the present paper is the potential for generating basis operators for formally arbitrary-order
multioperators.

General properties of the basis operators and of the resulting multioperators are described. As particular
cases, interpolation/extrapolations operators, quadratures and approximation to first derivatives are consid-
ered. The presented numerical examples illustrate high accuracy and claimed mesh convergence orders of the
multioperators approximations. As shown, extrapolation one-sided multioperators can be efficiently used for
generating numerical boundary conditions.

Concerning multioperators for hyperbolic conservation laws, it may be advantageous to construct multiop-
erators based on halve sums and halve differences of left and right one-parameter operators instead of con-
structing left and right multioperators. It allows one to perform independently optimization of phase and
amplitude errors introduced by multioperators schemes. Calculations in the case of the standard problem
for the Burgers’ equation show remarkably high performance of the scheme with the tenth-order
multioperator.

In general, it follows from the multioperators principle that formally arbitrary-order approximations can be
constructed with great ease without enlarging stencils and adding complexity to the basis operators by simply
increasing numbers M of the involved parameters. However it makes sense to obtain reasonably high orders,
the notion ‘‘reasonably high” being problem dependent. For example, Table 3 shows that near PC machine
precision accuracy is obtained in the case of the Burgers equation with the mesh size h ¼ 1=256. If such size
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is minimal for accurate representation of the smallest solution scales in other cases while the accuracy is pre-
served, there is no need in using higher-than-tenth orders schemes. Instead, it is worth concentrating at proper
optimization procedures allowing to deal with highest wave numbers supported by meshes. There is a good
opportunity to do so due to large numbers of multioperators controlling parameters. The numbers can be fur-
ther increased by increasing M without increasing the number of the c coefficients.

Many other options of the multioperators strategy are possible. They are not covered by the present paper
and can be a subject matter of further publications.
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